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Join The Dots
An Introduction To Graphs, Part 2

Before I continue with my intro-
duction to graphs, one of my

readers was kind enough to point
out that I’ve become ‘unreachable’.
For the past few articles, I’ve
neglected to add my email address
to the mini-bio at the end of the
article. Oops, sorry about that, it
wasn’t my intention to become
incommunicado. You can of
course reach me by sending a mes-
sage to julianb@turbopower.com
or to our Esteemed Editor, who will
forward it if need be. And please do
drop me a line; that includes
compliments, brickbats, errors in
text or code etc. If your message
makes a valid point, I’ll be sure to
include it in a sidebar in a future
article.

Anyway, onwards with graphs,
since we have a lot to cover. You
may recollect that in the October
1998 instalment of Algorithms
Alfresco, we talked about the graph
structure. We learned that a graph
consists of a set of nodes (or verti-
ces) connected together by edges.
The edges could be either two way
(if there was an edge between node
A and node B then there is an edge
between B and A, the same one) or
the edges were directed (if there
was an edge from A to B then it
does not follow that there is an
edge from B to A, we can think of
the edge having an arrowhead
showing the direction of the edge).
The latter kind of graph is known as
a digraph (or directed graph). Both
nodes and edges could contain
data (if an edge contains data it is
usually known as a weighted

graph). We provided three
different ways of storing a graph in
memory: as a matrix, a triangular
matrix (not for digraphs though),
or an array of linked lists. Finally,
we looked at depth-first traversals.

Phew! After that quick résumé,
let’s move on (of course, if you’ve
forgotten some of the above,
please quickly go over October’s
column and meet us back here).

Topological Sorts
One of the things I didn’t really
touch on with my previous discus-
sion was a depth-first traversal of
all the nodes in unconnected
graphs. The depth-first traversal
we’ve seen so far finds all the
nodes that can be visited from a
given source node. It is entirely
possible that some nodes in the
graph would not be visited by such
a traversal. If this is the case, we
call the graph unconnected. With a
non-directed graph it’s generally
simple to see if a graph is
unconnected by looking at its pic-
ture: basically the graph falls into
two or more sub-graphs with no
edges connecting them. For a
digraph, in many cases it’s not
obvious. If we wanted to visit abso-
lutely every node, we’d start out
from the first node and do a
depth-first traversal on that, then
we’d look for a node that hasn’t
been visited and do a depth-first
traversal on that. We’d continue
this process until all the nodes had
been visited. Listing 1 shows
ExecuteAll, the implementation of
this algorithm.

Why would we want to do this
(ie, visit all nodes in a depth-first
fashion)? There is a neat algorithm
that falls out from such a
depth-first traversal called a topo-
logical sort. Suppose we have a set
of tasks that need to be done. Cer-
tain of these tasks require others
to be performed first, in other
words they have prerequisites.
Examples of this are developing a
computer program (we need to
design the database before writing
the code, we have to decide on the
data items we’re going to track
before we design the database, the
install program comes last of all,
after all the EXEs and DLLs are fin-
ished), devising a recipe for choco-
late chip cookies (we can only put
the cookies in the oven after we’ve
mixed the cookie dough), getting
dressed (we have to put on our
underwear first, unless we happen
to be Superman) and so on. Trans-
lating this into nodes and edges in
our graph vernacular: a node is a
task, an edge is directed and shows
the prerequisite attribute (its from
node task must be performed
before its to node task and the
arrow points towards the to node).

A topological sort organizes the
tasks in order so that prerequisites
are done before their dependent
tasks. An important restriction
must be made on the graph first: it
must have no cycles; in other
words, it must be a directed acy-
clic graph, also known as a dag.
What’s a cycle? Well a cycle is
when you start from a node, visit
nodes along directed edges, and
get right back where you started
from (see Figure 1). If you think in
terms of tasks and prerequisites,

procedure TaaDepthFirstIterator.ExecuteAll(
var aHasCycle  : boolean; aExtraData : pointer);

var
i : integer;
ithHasCycle : boolean;

begin
aHasCycle := false;
for i := 0 to pred(dfiGraph.NodeCount) do begin
if (PitrCounter(dfiNodes[i])^.cMarker = 0) then begin
Execute(i, ithHasCycle, aExtraData);
aHasCycle := aHasCycle or ithHasCycle;

end;
end;

end;

➤ Listing 1: Depth-first ExecuteAll method.
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this means that if the graph of the
tasks is drawn up and contains a
cycle, a node could be its own
prerequisite. And we can’t have
that!

Making sure that a digraph is
acyclic is easy. We just have to do a
depth-first traversal and make sure
that the edges we follow never end
on a node that is preprocessed.
How’s that? Think about it. A
depth-first traversal works like
this: mark the current node as
preprocessed, go along each edge
from this node and recursively do
the same with each node at the
end. After we’ve followed all the
edges from the current node, mark
the node postprocessed. Suppose
we do manage to reach a
preprocessed node: this would
mean that the node is one of our
predecessors since a node is only
marked postprocessed once all of
its children and grandchildren, etc,
are visited and marked as
postprocessed. Hence we will have
discovered a path from a node,
through a child node, through a
grandchild node, and so on, that

reaches itself. A cycle in other
words. Notice that in an undirected
graph, cycles abound: there is
always an edge from a child to a
parent since it’s the same edge as
from the parent to the child! But,
we’re only talking about directed
graphs here. The Execute method
from the previous article has been
enhanced to report whether a
cycle was found. This month’s disk
has the new code.

So how do we do a topological
sort on a dag? It’s this simple:
create a linked list, execute a
depth-first traversal, and in the
postprocess event for each node,
add the node to the front of the
linked list. After the traversal is
over, the linked list represents the
tasks organized into prerequisite
order. And that’s it. Listing 2 shows
a topological sort. What we’ve
done here is, rather than return a
linked list with the nodes in topo-
logical order, we’ve created an
event and the event will be fired for
the nodes in sequence. This in turn
means that we don’t have to define
a linked list external to the
depth-first iterator, the implemen-
tor of the event handler can do
what he likes, he’ll just get them in
the right order.

Once we have a topologically
sorted dag we can redraw the
graph as shown in Figure 2. The

nodes (or tasks) are meant to be
executed in left to right order.
Notice that when we draw in all of
the edges from the original dag
they all point from left to right. If
you think about it, that’s a graphic
visualization of prerequisites.

Breadth-First Traversals
Another way of walking through a
graph is known as breadth-first tra-
versal. With depth-first traversal
we tried to go as far as we could
from the start node until we hit a
dead end and then we backtracked
until we found another unvisited
edge to follow. This traversal used
a stack to aid in the backtracking
(actually, if you look back at the
depth-first iterator I wrote in the
previous article, you’ll notice that
there isn’t an explicit stack, I just
used recursion and hence was
implicitly using the program stack
instead).

Well, with breadth-first travers-
als, we visit every neighboring
node to the start node first, and
then visit every neighboring node
to those nodes and so on. It’s a
kind of ripple effect, moving
outwards from the original node. It
turns out that breadth-first
traversals use a queue to store the
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➤ Figure 1:
A cycle in a directed graph.

procedure TaaDepthFirstIterator.TopologicalSort(
aExtraData : pointer);

var
TSList        : PbfiListItem;
Head, Temp    : PbfiListItem;
HasCycle      : boolean;

begin
// create the linked list
New(TSList);
TSList^.liNext := nil;
try
// now execute the depth first traversal on all the
// nodes: this will add all the nodes to our linked list
Reset;
ExecuteAll(HasCycle, TSList);
// now trigger the event handler, cleaning up the linked
// list as we go
Head := TSList^.liNext;
try
// if there was a cycle, the topo sort is meaningless
if HasCycle then
raise Exception.Create('digraph is not acyclic');

// walk the linked list

while (Head <> nil) do begin
// process the head node
if Assigned(dfiProcessSortedNode) then
dfiProcessSortedNode(
Self, Head^.liIndex, aExtraData);

// move down the list, dispose of the old head node
Temp := Head;
Head := Head^.liNext;
Dispose(Temp);

end;
except
// on error clean up the remainder of the linked list
while (Head <> nil) do begin
Temp := Head;
Head := Head^.liNext;
Dispose(Temp);

end;
raise;

end;
finally
Dispose(TSList);

end;
end;
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➤ Listing 2: Topographical sort.

➤ Figure 2:
Topographically sorting a dag.
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nodes we’ve visited, instead of a
stack.

Again, just like in the depth-first
traversal case, we’ll define a sepa-
rate class to perform a breadth-
first traversal. This provides isola-
tion of the iterator from the class
used to store the graph and hence
enables a breadth-first iterator
object to work with any graph
object descended from our original
graph class. The design is a little
more tricky than before because
we have to code up a queue as well,
but it’s pretty easy to follow. Like
before, we’ll have a pre-process
and a post-process event so that
you have control over when you
want to do some work with a node
being visited. The interface for the
breadth-first iterator is roughly the
same as for the depth-first iterator
from last time, and the code for the
Execute method is shown in Listing
3. Figure 3 shows the steps taken in
a breadth-first traversal for a
sample digraph (it’s the one in
Figure 2 of October’s article, so you
can compare the depth-first and
breadth-first traversals).

If you look at Listing 3, you’ll see
that the pre-process event gets
fired just as the node gets added to
the queue, and the post-process
event when the node is popped off
the queue. In other words,
pre-process is when the node is
first ‘seen’ from the vantage point
of its predecessor node, and

post-process when the node is
actually ‘visited’ and the edges
from it are then followed.

Shortest Path
Another thing to notice about the
breadth-first traversal is that it
gives you the shortest path from
the source node to every other
node. By shortest path, I mean the
number of edges that have to be
followed to get from the source
node to a given node (we’ll be
seeing another definition of short-
est path for a weighted graph in a
minute). We can see this in a
not-very-rigorous fashion by
visualizing the breadth-first search
as proceeding in ‘waves’ or ‘rip-
ples’ from the source nodes. First
all the immediate neighbor nodes
are visited (their shortest paths
are all of length 1), the first wave.
Then all their neighbors are vis-
ited, the second wave, and their
shortest path distances are of
length 2. And so on, so forth,
rippling outwards.

In fact, if we make note of the
parent (or predecessor) node of
each node as we traverse the
graph, which you’ll notice that the

iterator does, we can easily print
out the shortest path by walking
backwards following these back-
ward links. We can use recursion
or an explicit stack to print out the
path in the correct order (every
time we move backwards from a
given node we push the parent
node onto a stack until we reach
the source node; now we pop the
nodes off the stack and print them
out to give the shortest path).
Listing 4 gives the details where we
are using the program stack
implicitly through recursion.
Notice how we first traverse the
whole graph from the given index,
and then we print out the shortest
path to the given index by walking
backwards (since nodes are
untyped we require an extra rou-
tine to print a node: this routine
could print the name or identifier
of the node, for example). It could
very well be that there is no path
from the source node to the target
node (in which case we’ll hit a
dead end on a node without a
predecessor in our backwards
walk), so we ought to report that
fact as well. The implementation
makes the shortest path routine a

procedure TaaBreadthFirstIterator.Execute(
aFromIndex : integer; aExtraData : pointer);

var
i          : integer;
NewNodeInx : integer;
Edge       : longint;
OurLevel   : integer;
OurIndex   : integer;

begin
// perform preprocessing on the node
if Assigned(bfiPreProcess) then
bfiPreProcess(Self, aFromIndex, aExtraData);

// mark the node as preprocessed
with PitrCounter(bfiNodes[aFromIndex])^ do begin
cMarker := 1;

end;
// push the node onto the queue
bfiEnqueue(aFromIndex);
// whilst there are still items in the queue...
while not bfiQueueIsEmpty do begin
// pop the next item off the queue
OurIndex := bfiDequeue;
// perform postprocessing on the node
if Assigned(bfiPostProcess) then
bfiPostProcess(Self, OurIndex, aExtraData);

// mark the node as postprocessed
with PitrCounter(bfiNodes[OurIndex])^ do begin

cMarker := 2;
OurLevel := cLevel;

end;
// iterate through the edges from this node, push
// unvisited nodes onto the queue
i := 0;
while bfiGraph.GetNodeEdge(
OurIndex, i, Edge, NewNodeInx) do begin
with PitrCounter(bfiNodes[NewNodeInx])^ do begin
if (cMarker = 0) then begin
// update process information
cParent := OurIndex;
cLevel := succ(OurLevel);
// perform preprocessing on the node
if Assigned(bfiPreProcess) then
bfiPreProcess(Self, NewNodeInx, aExtraData);

// mark the node as preprocessed
cMarker := 1;
// push the node onto the queue
bfiEnqueue(NewNodeInx);

end;
end;
inc(i);

end;
end;

end;

➤ Listing 3:
The Execute method for the
breadth-first iterator class.
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➤ Figure 3: Breadth-first traversal, step-by-step.
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function: it returns True if a path
was found, False if not.

All right! Time for a breather. Up
to this point we’ve discussed (in
depth) graph representations,
depth-first traversals and breadth-
first traversals. We really ought to
move onto some heavyweight
algorithms, otherwise our
Esteemed Editor will be wondering
whether I’m losing touch!

Weighted Graph Algorithms
Let’s now consider weighted
graphs. If you recall, a weighted
graph is a graph where each edge
has a weight or a cost associated
with it. An obvious example is a
map where the cities and towns are
the nodes and the roads between
them are the edges of a graph. If we
denote the ‘cost’ of an edge as
being the average time it would
take to travel along that road, we
can then start asking questions like
which journey between city X and
city Y would take the smallest time
and through which other cities
must we pass? Or, which tour that
starts and ends at city X and visits
each and every city once would
take the shortest time?

If, instead, the cost of an edge
was the distance along the road,
and we wished to lay our high
bandwidth high cost optical cable
to connect primary hubs in all of
the cities, along which roads
should we lay it to minimize the
amount of cable?

These types of problems are
solvable by using weighted graphs,
a couple of important algorithms

and the priority queue class from
November’s Algorithms Alfresco.

Before we start we must make a
couple of important assumptions.
In my original graph class I allowed
an edge to be weighted with a
typeless pointer. Since our code up
to now hasn’t had to worry about
what data structure these typeless
pointers point to, we haven’t wor-
ried about it too much. Well, now is
the time to worry about it. For the
algorithms that follow we need to
lay down a couple of rules. Rule 1 is
that we need to be able to take two
edge weights and state whether
the first is less than, equal to, or
greater than the second. The
weights have to be sortable, in
other words. Rule 2 is even more
strict: given two edge weights, we
need to be able to add them
together. In other words we need
to calculate the total cost of going
from node X to node Y and then on
to node Z. These two rules pretty
well force us to assume that the
weight of an edge is numeric. We
shall assume that edge weights are
of type longint from now on (the
code on the disk has been changed
to reflect this).

The next assumption is less
strict. One of the algorithms we
shall meet in a minute (Dijkstra’s
algorithm) only works if the
weights are never negative. We’ll
see why in a moment, but for now
we’ll embrace this assumption as
well.

So, edge weights are non-
negative longint values.

Priority-First Traversals
The two traversals we’ve seen so
far are depth-first and breadth-

first. The main traversal method
for solving weighted graph
algorithms is priority-first. The
previous two used a stack and a
queue respectively; the priority-
first traversal uses a priority
queue (seems obvious, no?). The
traversal works by taking the edge
with the largest priority (however
that may be defined). Note that I
didn’t say cost or weight, but prior-
ity. We’ll see a couple of different
ways of calculating the priority in a
moment for different algorithms.

What happens in a priority-first
traversal is this:

1. Mark the starting node as
preprocessed.

2. Compute the priority of the
starting node.

3. Insert it into the priority
queue.

4. Remove the node with the
maximum priority from the queue,
mark it as postprocessed. Follow
each edge from that node.

5. If an edge leads to a node that
hasn’t been visited yet, mark the
node as preprocessed, calculate
its priority and insert it into the pri-
ority queue.

6. If the edge leads to a
preprocessed node, the node is in
the priority queue already, so cal-
culate the new priority of the node
(it might have changed because of
the different path we’ve taken),
find the node in the priority queue
and change the priority if the new
value is larger than the old. Update
the priority queue, if so.

7. If the priority queue is not
empty, return to step 4.

If you think back to November’s
Algorithms Alfresco column for a
moment, I deliberately introduced

function TaaBreadthFirstIterator.bfiShortPathPrim(
aFromIndex : integer; aToIndex : integer;
aExtraData : pointer) : boolean;

var
Parent : integer;

begin
if (aFromIndex = aToIndex) then begin
{ we reached source node, print it & return success }
if Assigned(bfiPrintNode) then
bfiPrintNode(Self, aToIndex, aExtraData);

Result := true;
end else begin
Parent := PitrCounter(bfiNodes[aToIndex])^.cParent;
if (Parent = -1) then begin
{we've hit a dead end-no path back to the source node}
Result := false;

end else begin
{recurse to the parent, if successful print this node}
if bfiShortPathPrim(aFromIndex, Parent, aExtraData)
then begin
if Assigned(bfiPrintNode) then
bfiPrintNode(Self, aToIndex, aExtraData);

Result := true;
end else
Result := false;

end;
end;

end;
function TaaBreadthFirstIterator.ShortestPath(
aFromIndex : integer; aToIndex : integer;
aExtraData : pointer) : boolean;

begin
// first execute the breadth first traversal: this sets up
// our internal data structure
Reset;
Execute(aFromIndex, nil);
// now traverse from the ToIndex node back to the
// FromIndex node pushing visited nodes on the stack:
// we'll then unwind the stack to print the shortest path
Result :=
bfiShortPathPrim(aFromIndex, aToIndex, aExtraData);

end;

➤ Listing 4:
The unweighted shortest path.
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a priority queue towards the end of
the article that allows step 6 to be
performed efficiently. Foresight or
what?!

Anyway, before I get too
self-congratulatory, it seems I’m
forgetting something important:
what on earth is the priority value?
Answer: it depends on which algo-
rithm we’re talking about. Before
you start thinking that your author
has finally become way too eso-
teric and academic and self-
referential and maybe it’s time to
read One Last Compile, let’s look at
the first weighted graph algorithm.
This is the one to determine a mini-
mum spanning tree (or, How to Visit
All the Nodes and Minimize the
Cost). This is known as Prim’s
Algorithm. In our couple of exam-
ples a few paragraphs back, this
will be the solution to the optical
fibre one.

Prim’s Algorithm
A spanning tree is a representation
of the graph as a multi-way tree,
with every node in the graph some-
where in the tree (ie, we make the
assumption that the graph is
connected), and the links between
parents and children in the tree are
edges in the graph. There can be
several spanning trees for a given
graph, it all depends where we
start and which edges we travel
down first. A minimum spanning
tree is the one of these many span-
ning trees such that the cost of tra-
versing the tree is minimal for the
given graph. In other words, if we

sum the cost of the edges in the
various spanning trees, then the
minimum spanning tree is the one
whose total cost is the smallest.

Before we look at how to imple-
ment Prim’s algorithm with a
priority-first traversal, and hence
define how to calculate the prior-
ity, let’s see how it works.

Suppose we have the graph in
Figure 4. We want to find the mini-
mum spanning tree starting at
node a (or, in the vernacular,
rooted at a). Visit a. Select the edge
with the smallest cost going from a
and visit the node at the end. This
node is b and the cost was 5 units.
Now select the edge with the small-
est cost going from either a or b,
and visit the node at the end. In our
case this is the edge from b to d
with cost 10. Repeat the process.
Selecting the next edge reveals a
choice of two: from a to e, or from d
to a. We reject the second alterna-
tive because a has already been
visited, so we visit e. Again, select-
ing the next edge gives us a choice
of two: d to e, and b to c. We reject
the first choice (e has been visited
before) so we use the second and
visit c. At this point we can stop
since we’ve visited all the nodes.
Figure 5 shows the steps to pro-
duce the final minimum spanning
tree.

So, to return to our priority-first
traversal, what is the priority value
of a node? Well, I hope that you can
see that it’s inversely proportional
to the edge cost to visit that node:

the smaller the cost to get to the
node, the larger the priority of the
node. We could use a formula like
VeryLargeValue minus EdgeCost to
calculate the priority. However, a
cleverer plan would be to change
the priority queue to act on the
edge cost directly and return the
smallest (that is, to use a
min-heap). In fact this is what we
will do: we will change the priority
queue to a min-heap and, in step 5
above, we’ll replace the priority of
an already preprocessed node if
the new value is smaller than the
old.

We can now take all of this and
produce a priority-first traversal
iterator, and then a specialized
routine for calculating the mini-
mum spanning tree. The Execute
method of the iterator is shown in
Listing 5. Note that when we store
the node in the priority queue, we
actually store the internal counter
record (the one that takes account
of a node’s parent, its priority and
so on). This enables the priority
queue to compare priorities of
items (or rather, enables us to
easily write a comparison function
for the priority queue). I’m sure
you can follow the code (supple-
mented by the files on the
diskette) and compare it to the
seven-step algorithm above.

So how do we code Prim’s algo-
rithm using this iterator? Really
simply as Listing 6 shows. Notice
the routine to evaluate the priority
based on Prim’s Algorithm: all we
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➤ Figure 4: A digraph.
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➤ Figure 5: The minimum spanning tree for the
digraph in Figure 4.
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do is to return the cost of the edge
leading to the node.

Travelling Salesmen Problems
What is so special about Prim’s
algorithm and minimum spanning
trees? Well, they’re used in travell-
ing salesmen type problems.

Suppose that a salesman has a
set of stores that he must visit in
order to demonstrate and sell his
company’s latest widget. It makes
sense for him to minimize the
amount of time it takes him to
travel between these stores so that
he can take the rest of the day off
(and indeed to make sure that he
has some time to take off!). Using
his knowledge of the traffic in his
city, where these stores are, the
one-way systems, etc, he can draw
up a graph with the stores as nodes
and the cost of the edge between
two nodes the time it would take to
go from one store to the other. It is
assumed that he can get from any
store to any other without passing
through a third (the graph repre-
senting the map of the stores and
roads is said to be complete). How
does he calculate a tour of the
stores that will take the minimum
time?

procedure TaaPriorityFirstIterator.Execute(
aEvalPriority : TaaEvalPriority; aFromIndex : integer;
aExtraData : pointer);

var
i          : integer;
NewNodeInx : integer;
Edge       : longint;
OurLevel   : integer;
OurIndex   : integer;
NewPriority: longint;

begin
// perform preprocessing on the node
if Assigned(pfiPreProcess) then
pfiPreProcess(Self, aFromIndex, aExtraData);

// mark the node as preprocessed
with PitrCounter(pfiNodes[aFromIndex])^ do begin
cMarker := 1;
cPriority := 0;
// push the node onto the queue
cHandle := pfiQueue.Add(pfiNodes[aFromIndex]);

end;
// whilst there are still items in the queue...
while (pfiQueue.Count <> 0) do begin
// pop the next item off the queue
OurIndex := PitrCounter(pfiQueue.Remove)^.cIndex;
// perform postprocessing on the node
if Assigned(pfiPostProcess) then
pfiPostProcess(Self, OurIndex, aExtraData);

// mark the node as postprocessed
with PitrCounter(pfiNodes[OurIndex])^ do begin
cMarker := 2;
OurLevel := cLevel;

end;
// iterate through the edges from this node, push
// unvisited nodes onto the queue
i := 0;
while pfiGraph.GetNodeEdge(OurIndex, i, Edge,

NewNodeInx) do begin
with PitrCounter(pfiNodes[NewNodeInx])^ do begin
{totally unvisited before}
if (cMarker = 0) then begin
// update process information
cParent := OurIndex;
cLevel := succ(OurLevel);
// perform preprocessing on the node
if Assigned(pfiPreProcess) then
pfiPreProcess(Self, NewNodeInx, aExtraData);

// mark the node as preprocessed
cMarker := 1;
// calculate the priority
cPriority := aEvalPriority(Self, OurIndex, Edge,
NewNodeInx);

// push the node onto the queue
cHandle := pfiQueue.Add(pfiNodes[NewNodeInx]);

end else if (cMarker = 1) then begin
{already preprocessed}
// calculate the new priority
NewPriority := aEvalPriority(Self, OurIndex, Edge,
NewNodeInx);

// if it is less than the current one, update the
// node and reheapify the queue
if (NewPriority < cPriority) then begin
cParent := OurIndex;
cLevel := succ(OurLevel);
cPriority := NewPriority;
pfiQueue.Replace(cHandle, pfiNodes[NewNodeInx]);

end;
end;

end;
inc(i);

end;
end;

end;

➤ Listing 5:
The Execute method for the
priority-first iterator class.

function EvalPrimsPriority(aSender : TObject; aFromIndex : integer;
aEdgeCost : longint; aToIndex : integer) : longint;

begin
Result := aEdgeCost;

end;
procedure MinSpanningTree(aGraph : TaaGraph; aProcessNode : TaaProcessNode;
aExtraData : pointer);

var
Iter : TaaPriorityFirstIterator;

begin
Iter := TaaPriorityFirstIterator.Create(aGraph);
Iter.OnPostProcess := aProcessNode;
try
Iter.Execute(EvalPrimsPriority, 0, aExtraData);

finally
Iter.Free;

end;
end;

Believe it or not, solving this
type of problem generically is diffi-
cult in the extreme. Actually, let’s
rephrase that. Although the solu-
tion is simple to state (list all the
possible tours and select the one
with the smallest cost), the prob-
lem that arises is the number of
possible tours increases exponen-
tially with the number of nodes and
edges. In our salesman problem,
suppose that there were 5 possible
stores and that he could go from
any store to any other. He starts off
at the factory, has a choice of 5
stores to visit first, then a choice of
4 stores to visit next, and so on
until he’s visited the last store and
then returns to the factory. There
are 5! different possible tours he
could make, and that’s 120. Calcu-
lating the cost of each tour is pretty
simple and it wouldn’t take too
long to calculate them all and find

the minimum. Suppose now that
there are 10 different stores to
visit. This time he’d have to find
the minimal tour in a set of 10! or
3,628,800 possibilities. This is get-
ting a little unwieldy, but if his boss
had given him a PC that could cal-
culate the cost of 100,000 tours a
second it’d take about 40 seconds
to find the minimum one. If there
were 15 stores then there would be
1,307,674,368,000 different tours in
all, which would take about 151
days to calculate the minimal one
on his little PC. This is just not
feasible.

The travelling salesman prob-
lem is one of a set of NP-complete
problems (where NP means non-
deterministic polynomial-time).
The main characteristic of all
these problems is that the running

➤ Listing 6: Prim's algorithm.



time of an algorithm to solve the
problem increases exponentially
with the number of items in the
problem. Compare this with
sequential search, for example.
This simple algorithm for finding
an item in an array is linear in terms
of execution speed: the time to find
a item in 1,000 of them will take
about 10 times longer than finding
one in 100 of them. Another exam-
ple: the binary search algorithm’s
execution time increases propor-
tionally to the log of the number of
items, so if it takes 5 units of time to
find an item in 32 of them, it’ll take
10 units of time to find an item in
1,024 of them (ie, twice as long for
the square of the number of items).

When faced with an NP-complete
problem, the plan is to try and find
a reasonably good approximation
to the solution in a reasonable
amount of time. In other words, we
acknowledge the intractability of
finding the real solution and
instead settle for a ‘pretty good’
answer that we can calculate rea-
sonably quickly. In the travelling
salesman problem, it turns out that

we can get a pretty good minimal
tour from a minimum spanning
tree. Since Prim’s algorithm for
obtaining the minimum spanning
tree is O(E * logn), where E is the
number of edges and n the number
of nodes, we can obtain a pretty
good answer in much, much less
time than getting the correct one.
(In fact, without going into the
mathematics, we can derive a tour
from a minimum spanning tree
that costs not more than twice the
cost of the minimal tour and in
practice, much less.) The deriva-
tion of a tour from a minimum
spanning tree will have to wait for
another time, though.

Dijkstra’s Algorithm
Now let’s move on to our second
algorithm with weighted graphs:
finding the path with the lowest
cost between two nodes in a graph,
also known as Dijkstra’s
Algorithm.

Often we need to calculate the
smallest cost to move from one
node (the start) in a graph to
another (the destination or

target). Suppose our graph repre-
sents an airline network between a
set of cities. Each link (or edge)
between two cities represents a
flight, and the ‘cost’ of the flight is
the time taken to get from one city
to the other. How can we calculate
the minimal time it would take to
go from city A to city B?

Enter Dijkstra’s Algorithm. Like
Prim’s Algorithm, this uses a prior-
ity-first traversal. Actually
Dijkstra’s Algorithm gives us the
shortest path from the source
node to every other node (note
that in this section by shortest path
we mean the path with the overall
lowest cost), and we’ll deal with the
shortest path between two given
nodes in a moment. The algorithm
works like this. We walk the graph
one node at a time, starting from
the start node. As we visit each
node, we calculate the minimum
path from the start to that node.
This is an incremental procedure
as we’ll see, we don’t actually try
and determine the shortest path
from first principles every time. So
which nodes do we choose to visit?
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Look at Figure 6. This a weighted
digraph and we are going to find
out the shortest path from node a
to node e. Remember that by
‘shortest path’ I don’t mean the
path with the smallest number of
hops, for that would be [a, e] and
this section of the article would be
very short. No, I mean the path
with the smallest cost. For exam-
ple, the cost of the path [a, e] is 50
units; can we do better?

Dijkstra’s Algorithm goes like
this. Associate a value for each
node to represent the cost of get-
ting there from node a. Let’s store
this in an array called DV for
Dijkstra’s value (or maybe dis-
tance value). We initialize the
array: DV[a] is zero, DV[b] is 5, DV[e]
is 50 and the values for nodes c and
d are unknown as yet and so we set
them to a large number. (I know we
can just look at the graph and work
it out, but we’re trying to illustrate
an algorithm here!) We choose the
next node to visit by selecting a
node that can be visited from the
ones we already have visited, and
we select the one with the smallest
Dijkstra’s value. Well, from the ini-
tial setup, we have only visited
node a (it’s where we are starting
from after all), and we can only
visit b or e. We choose b since it has
the smallest value. We now update
our DV array. From b we can visit
either c or d. The distance value for
c, going through b, would be 45 (ie,
5 + 40). If this is less than the cur-
rent value in DV[c] then we replace
it (it is, and so we do). The same
goes for d. At this point the array DV
contains [0, 5, 45, 15, 50]. Start
the process over again. We can

visit any of the unvisited nodes c, d,
e at this point, and we choose the
edge that is least costly: the one to
d. We visit d and then update the DV
array again. This time it’ll equal [0,
5, 25, 15, 35]; notice how we’ve
gotten ‘closer’ to both c and e by
this point. We still haven’t visited e
yet and so we continue. The ‘near-
est’ unvisited node this time is c so
we take that edge, and update DV
again to [0, 5, 25, 15, 30]. The
nearest unvisited node is now e
and so we finally visit it. The ‘cost’
of getting to e from a is 30 units,
and if we’d saved the shortest
paths at each step we’d have
noticed that we took the path [a, b,
d, c, e] to get there.

This then is Dijkstra’s Algorithm.
It can be shown that this ‘greedy’
algorithm does produce the short-
est path from start to target node.
In fact, if we let it visit every single
node in the graph we can find out
the shortest path from a given
node to every other. (Notice that
the DV array in our example stores
the cost of going from a to every
other node since we managed to
visit every node in the process.)
Although our example doesn’t
show this, it is entirely possible for
the algorithm to hit a dead end and
have to backtrack. It doesn’t
matter though: if the graph is con-
nected we will eventually get to the
target node.

Let’s cast this in terms of our pri-
ority-first traversal. Simple, right?
Well, yes. The priority of a node is
now its total distance from the
start node (or rather the total cost
of getting to the node from the start
node). All we have to do is alter the
priority evaluation function and
we’re done. Which is what Listing 7

does. We do the same trick as we
did with the shortest path algo-
rithm with the breadth-first tra-
versal (ie, work out the path from A
to B by working backwards from B,
pushing the parent nodes onto a
stack until we get to A, and then
popping them off in order).

All Done For Now
After all that, take a huge pat on
your back. We’ve just gone
through some pretty chunky con-
cepts, structures, algorithms and
coding. It’s taken three articles to
do it as well, so if you’ve managed
to stay with me through it all, well
done. This has been a learning
exercise for me as well, although I
vaguely knew what graphs were
and had read about the various
algorithms we’ve covered, I’d
never tried to code them before.

If you want to know more about
graphs, I used three books as
research: Introduction to Algo-
rithms by Cormen, Leiserson and
Rivest; Practical Algorithms in C++
by Bryan Flamig; and Data Struc-
tures, Algorithms, and Performance
by Derick Wood.

Next time, we’ll take it a little
easier. Promise [Thanks! Ed].

Julian Bucknall can be pretty
graphic, if a little edgy. He can
be contacted via email at
julianb@turbopower.com. The
code that accompanies this article
is freeware and can be used as-is
in your own applications.

© 1999 Julian M Bucknall
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➤ Figure 6:
Work out the minimum
cost to go from a to e.

function EvalDijkstrasPriority(aSender : TObject; aFromIndex : integer;
aEdgeCost : longint; aToIndex : integer) : longint;

begin
with (aSender as TaaPriorityFirstIterator) do
Result := GetPriority(aFromIndex) + aEdgeCost;

end;
procedure SmallestCostPath(aGraph : TaaGraph; aFromIndex : integer; aToIndex :
integer; aProcessNode : TaaProcessNode; aExtraData : pointer);

var
Iter : TaaPriorityFirstIterator;

begin
Iter := TaaPriorityFirstIterator.Create(aGraph);
Iter.OnPrintNode := aProcessNode;
try
Iter.Execute(EvalDijkstrasPriority, aFromIndex, nil);
Iter.TracePath(aFromIndex, aToIndex, aExtraData);

finally
Iter.Free;

end;
end;

➤ Listing 7: Dijkstra's Algorithm.
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